If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+8n-12=0
a = 2; b = 8; c = -12;
Δ = b2-4ac
Δ = 82-4·2·(-12)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{10}}{2*2}=\frac{-8-4\sqrt{10}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{10}}{2*2}=\frac{-8+4\sqrt{10}}{4} $
| 25x=(6x+4)(4x) | | -x/4-5=-10 | | -2=2-5x | | Xx12=16 | | X=-2(3x)+56 | | ¼(x-4)=0 | | 2z+3=5z-6 | | g-73/3=5 | | p/6+23=31 | | 12z-3=2z-63 | | -12=2-5x | | 7x+6(1+2x)=8x+39 | | 2(2x−1)=46 | | v-4.17=7.2 | | -3(k-72)=-81 | | Y=16t^2+160t+50 | | 6-x-6=-5 | | p÷9=3 | | 5v^2=-1-10v | | w+36/6=-8 | | 1/3x+5+1/3x+5+2/3x+10+2/3x+10=90 | | 9f+8=44 | | 2x+48=115,x | | 0.23n=2.53 | | u+21/9=5 | | 2(x+2)+4=5+(-3)+4x | | 0.5=1.5n | | x=+14.5 | | 8y+20=76 | | 7(m-8)-2(m-2)=-2 | | 5r-20=20 | | -6x-29=5x-71 |